Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1723808.v1

ABSTRACT

To combat the ongoing COVID-19 pandemic, scientists have been conducting research at breakneck speeds, producing over 52,000 peer-reviewed articles within the first year. To address the challenge in tracking the vast amount of new research located in separate repositories, we developed outbreak.info Research Library, a standardized, searchable interface of COVID-19 and SARS-CoV-2 resources. Unifying metadata from fourteen repositories, we assembled a collection of over 270,000 publications, clinical trials, datasets, protocols, and other resources as of May 2022. We used a rigorous schema to enforce consistency across different sources and resource types and linked related resources. Researchers can quickly search the latest research across data repositories, regardless of resource type or repository location, via a search interface, public API, and R package. Finally, we discuss the challenges inherent in combining metadata from scattered and heterogeneous resources and provide recommendations to streamline this process to aid scientific research.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1723829.v1

ABSTRACT

The emergence of SARS-CoV-2 variants of concern has prompted the need for near real-time genomic surveillance to inform public health interventions. In response to this need, the global scientific community, through unprecedented effort, has sequenced and shared over 11 million genomes through GISAID, as of May 2022. This extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info, a platform that currently tracks over 40 million combinations of PANGO lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials, and the general public. We describe the interpretable and opinionated visualizations in the variant and location focussed reports available in our web application, the pipelines that enable the scalable ingestion of heterogeneous sources of SARS-CoV-2 variant data, and the server infrastructure that enables widespread data dissemination via a high performance API that can be accessed using an R package. We present a case study that illustrates how outbreak.info can be used for genomic surveillance and as a hypothesis generation tool to understand the ongoing pandemic at varying geographic and temporal scales. With an emphasis on scalability, interactivity, interpretability, and reusability, outbreak.info provides a template to enable genomic surveillance at a global and localized scale.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.27.22269965

ABSTRACT

The emergence of SARS-CoV-2 variants has prompted the need for near real-time genomic surveillance to inform public health interventions. In response to this need, the global scientific community, through unprecedented effort, has sequenced over 7 million genomes as of December 2021. The extraordinarily high sampling rate provides a unique opportunity to track the evolution of the virus in near real-time. Here, we present outbreak.info, a platform that can be used to track over 40 million combinations of PANGO lineages and individual mutations, across over 7,000 locations, to provide insights for researchers, public health officials, and the general public. We describe the data pipelines that enable the scalable ingestion and standardization of heterogeneous data on SARS-CoV-2 variants, the server infrastructure that enables the dissemination of the processed data, and the client-side applications that provide intuitive visualizations of the underlying data.

4.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.20.477133

ABSTRACT

To combat the ongoing COVID-19 pandemic, scientists have been conducting research at breakneck speeds, producing over 52,000 peer reviewed articles within the first 12 months. In contrast, a little over 1,000 peer reviewed articles were published within the first 12 months of the SARS-CoV-1 pandemic starting in 2002. In addition to publications, there has also been an upsurge in clinical trials to develop vaccines and treatments, scientific protocols to study SARS-CoV-2, methodology for epidemiological modeling, and datasets spanning molecular studies to social science research. One of the largest challenges has been keeping track of the vast amounts of newly generated disparate data and research that exist in independent repositories. To address this issue, we developed outbreak.info, which provides a standardized, searchable interface of heterogeneous data resources on COVID-19 and SARS-CoV-2. Unifying metadata from 14 data repositories, we have assembled a collection of over 200,000 publications, clinical trials, datasets, protocols, and other resources as of October 2021. We used a rigorous schema to enforce a consistent format across different data sources and resource types, and linked related resources where possible. This enables users to quickly retrieve information across data repositories, regardless of resource type or repository location. Outbreak.info also combines the combined research library with spatiotemporal genomics data on SARS-CoV-2 variants and epidemiological data on COVID-19 cases and deaths. The web interface provides interactive visualizations and reports to explore the unified data and generate hypotheses. In addition to providing a web interface, we also publish the data we have assembled and standardized in a high performance public API and an R package. Finally, we discuss the challenges inherent in combining metadata from scattered and heterogeneous resources and provide recommendations to streamline this process to aid scientific research.


Subject(s)
COVID-19 , Rigor Mortis
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.05.21251235

ABSTRACT

The emergence of the early COVID-19 epidemic in the United States (U.S.) went largely undetected, due to a lack of adequate testing and mitigation efforts. The city of New Orleans, Louisiana experienced one of the earliest and fastest accelerating outbreaks, coinciding with the annual Mardi Gras festival, which went ahead without precautions. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large, crowded events may have accelerated early transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana initially had limited sequence diversity compared to other U.S. states, and that one successful introduction of SARS-CoV-2 led to almost all of the early SARS-CoV-2 transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras and that the festival dramatically accelerated transmission, eventually leading to secondary localized COVID-19 epidemics throughout the Southern U.S.. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate COVID-19 epidemics on a local and regional scale.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL